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A set of previously measured helium (e,2e) coincidence ionization differential cross sections
obtained over an exceptionally wide range of outgoing electron angles has been decomposed into
tensorial angular components. A technique has been used which is familiar in nuclear physics for the
analysis of cascade decay correlations but which does not appear to have been applied previously
to atomic scattering or ionization processes. The amplitudes of the angular components, and their
variation with energy, give information of a new type on the interplay between the incident and

outgoing electrons.
PACS number(s): 34.80.Dp

The derivation of angular momentum information from
measured angular distributions of reaction products has
a long and distinguished history, particularly in the gen-
eral area of nuclear physics [1-4]. As far as we are aware,
this type of analysis has not been attempted previously
on the atomic (e, 2e) ionization process, although Klar
and Fehr [5] have pointed out this possibility. The he-
lium (e,2e) experimental results, presented by Murray
and Read [6] and obtained over an exceptionally wide
range of angles, provide the first opportunity for such
an analysis. The angular range has been achieved by
measuring the differential scattering cross section over
an unrestricted range of scattering geometries, from the
coplanar to the perpendicular plane geometry.

In the experiments of Murray and Read [6], the inci-
dent electrons and target atoms are not polarized, the
outgoing electron polarizations are not measured, and
the target atom and final ion have zero angular momenta.
The differential cross section for particular incident and
outgoing energies can thus be decomposed into angular
functions that depend only on the linear momentum vec-
tors kg, ks, and ko of the two outgoing electrons and the
incident electron, respectively. These angular functions
are necessarily scalars that do not depend on the choice
of coordinate system. They are therefore [1-5] the scalar
invariants

11,10 (Ka, ks, ko)

= Z (lamalyms)lomo)Crom, (Ka)Ciym, (Kb)

mamp
X Clymg (ko) (1)
where Cim(k) = [47/(2l + 1)]}/?Yim(k), and where I,

ly, and o are integers that label the members of the full
set of functions I ;,;,- Some examples of these scalar
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invariants (omitting normalizations for clarity) are

Iooo ~ const, Ijo1 ~ ko -ka, Ii10 ~ kg - ks,
Loz ~ 3(ko - ko) =1, Inzo ~ 3(ka - ks)? - 1,
(2)
Ini ~ 3(ko - ko) (kg - ky) — (ko - ks),
L1z ~ 3(ko - ka) (ko - ks) — (k, - ks).

The decomposition of the (e, 2e) differential cross-section
o(ka, ks, ko) is then given by

o(ka, ks, ko)

= Z Bi, 1,1, (kay ks, ko) 1, 1510 (Ka, ks, ko), (3)
lalplo

where the amplitudes By, i,1,(ka, kb, ko) depend on the
magnitudes of the three momenta but not on their direc-
tions. These amplitudes provide in principle a complete
parametrization of the measured cross section, allowing
comparison with calculations and also allowing compar-
ison between sets of experimental results obtained over
different ranges and choices of scattering angles. They
also provide a link [5] between coincidence and noncoin-
cidence differential cross sections.

Inherent symmetries in the (e, 2e) process give rise to
restrictions on the allowed combinations of I, I, and lo.
The first restriction arises from the parity of the angular
functions, which follows from the parity of the spherical
harmonics, and is given by

Ilalblo(—Rav —lzby _RO)
= (=1)letletlo 110 (ka, ks, ko). (4)

Since the differential cross section is unaffected by an
inversion of the coordinate system, odd values of (I, +
lp + lp) must therefore be excluded from the summation
in Eq. (3). A further, general restriction is that l,, I,
and /o must satisfy the triangulation condition.

Another restriction can arise from the exchange sym-
metry:
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Tiytato (Ko, ko, ko) = (—1)etteHlo g 1y (ka, ke, ko). (5)

The differential cross section is unaffected by the ex-
change of k, and kp, which therefore implies that the
amplitudes B have the exchange symmetry

Bi,1.1, (kyy ko, ko) = Bi, 1,1, (ka, ks, ko). (6)

In the experiments of Murray and Read [6] the two out-
going electrons have the same energy, giving

Bi,1,1,(ka, kb, ko) = Bi, 1,1, (Ka, ks, ko)- (7)

The summation in Eq. (3) can therefore be restricted to
ly > I, when analyzing experiments for which E, = E.
In summary, the three conditions considered so far are

la +1s+1lo = even, A(la,lolo) #0, b >1la.  (8)

An additional restriction on the allowed combinations
of lg, ly, and Iy arises from the symmetry of the angular
configuration used by Murray and Read [6]. Because
of this, the angular functions for this experiment are
functions of only two independent mutual angles ¢ and
£ [6]. The full angular set I j,1,(kq, ks, ko) is a func-
tion of three independent mutual angles, which can be
taken as 0,, 0y, and (¢, — ¢»), where ko defines the
z axis. The functions Ij j,1,(£,%) appropriate to the
present data are in this sense a subset of the complete
functions I;_1,1, (64, 6b, s — ). Although the functions
of the complete set are linearly independent (see below),
the functions of the subset are not, so that we can write

L1, (€,9) = Z ey Do (€, 9)- 9)

A

The coefficients c; 1, are found to be nonzero if the fol-
J

(la — [m])! (I — |m|)!
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lowing conditions are satisfied:
Ip=loylo—2,...,|la — ls|
and (10)
Ul =1+l la+l—2,...,0

For example,

3v21 4
Ipzz = 2/7{ \/5—1132 + gIozz + V50

+91#Iuo - 1_161000}‘ (11)
We have established these dependencies algebraically for
values of l,, Iy, and lp up to 9 and have confirmed them
numerically at selected angles. The effect of the linear
dependences for the present analysis is that some combi-
nations of l,, lp, and lp become redundant, the ordering
of the l,, Iy, and !y determining the particular combina-
tions that have to be omitted. We have chosen to scan g
from 0 to a maximum preset value, and at each value of [y
have scanned all the possible combinations of [, and [, in
order of increasing I, and {; up to their maximum preset
values, using the conditions given by (8) above. The re-
dundant combinations then become those for which the
term (I, + ly) has already appeared in the list, for the
given value of ly.

The reduction in the number of combinations of [, I3,
and ly due to the energy and angular symmetries is by
approximately a factor of 2 in the present analysis and is
very helpful because it allows a larger range of values to
be explored when fitting to the experimental data.

For given incident and outgoing electron energies the
amplitudes can be extracted by fitting Eq. (3) to the
measured differential cross sections. Taking the z axis
along the direction ko, the angular functions have the
form

Il,,h,lo (ga’ Gba ¢) = Z(—l)m(lamlb - m|100) [

m

(la + [m])! (I + |m])!

1/2 ]
] P (0a) P (0)e™, (12)

where ¢ = ¢, — ¢p. Note that this expression differs from that given in [1], by the factor (—1)%+%(2l, +1)~1/2. In the
present symmetrical configuration, 6, = 6, and the angles 6, and ¢ are related to the gun angles ¥ and the detection

plane angle ¢ by [6]

cosf, = cos& cos?, cot g = cot £ sin. (13)

In principle the full set of amplitudes can be obtained by making use of the orthogonality property of the angular

functions,

/ L1116 (8as O, &) L1t 111 (B, Op, @) 5in 0, sin OpdO,dOpdd =

8T
(20 + 1)(2lp + 1)

6141; 6“,;6,0,6. (14)
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Note that this expression also differs by a factor from that
given by [1]. The present experiment does not, however,
cover the whole range of values of 6,, 0, and ¢. We have
therefore used a leasi-squares fitting method to analyze
the experimental results. The quantity that we have min-
imized is

X2 = Zwi{acalc(ka,akby kO) - Uexpt(ka1kbak0)}27 (15)

where 0ca)c is given by Eq. (3), expt is the measured
differential cross section, and the summation is over the
experimental points i. The weighting factors w; are based
on the statistical weights of the experimental data points.

Three conditions are incorporated in the minimization
procedure, all of which are concerned with the calcu-
lated cross sections at the end points £ = 0° and 180°
for each value of the gun angle v, and in the gaps that
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FIG. 1. The calculated fitting amplitudes By, 1,1, (Ka, kb, ko)
for the helium (e, 2e) differential cross section symmetric in
energy and scattering angle. The amplitudes are grouped
into equal lo values, the associated value of I, being shown
immediately above these. The I, component can be deduced
from the condition I, + s = lo, lo + 2,....
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are present in the data near these end points. The first
condition is that o, should be zero at the end points,
because here the two outgoing electrons coincide in di-
rection. The second condition is that ., should not be
allowed to become negative anywhere, which would be
unphysical. The third is that the calculated cross section
should have not more than one point of inflection in each
gap, to ensure a monotonic behavior, without any peaks
or shoulders. Details of the computer programs used for
the analysis will be given in a future publication.

The four incident energies used by Murray and Read
(6] are 44.6, 54.6, 64.6, and 74.6 eV, with correspond-
ing outgoing electron energies of 10, 15, 20, and 25 eV.
Several different sets of values of max(l,,{s) and max(lp)
have been explored. The way in which the quality of the
fits depends on these maximum values will be described
in a future publication. We present here the results ob-
tained by applying the set that has max(l,,ls) = 7 and
max(lg) = 6 to the data at the four incident energies.

The values of the amplitudes Bj_i,1,(ka, kb, ko) ob-
tained from these fits are shown in Fig. 1, grouped by
the values of lp. Within each group the values of [, are
indicated. The corresponding values of [, can be de-
duced from conditions given above, and are such that
within each [y group the sum [, + [/, takes the values
loslo+2,lp+4,....

At all four incident energies the largest amplitude oc-
curs for [, = 1, I, = 3, and [y = 2. This amplitude
incorporates that for I, = 2, {, = 2, and Iy = 2, with
which it is linearly related, as given by Eq. (11).

The higher values of [y feature more prominently at
the higher values of Ej,.. A result of much greater sig-
nificance is that the lowest values of Ej, . give the high-
est values of [, and [,. For example, when lo = 2 the
combination (lq,ls) = (4,6) contributes significantly at
Ei,. = 44.6 eV, where the two outgoing electrons have
the energy 10 eV, but less significantly at 74.6 eV, where
the outgoing energy is 25 eV. The lowest of the values of
E;,,. studied here therefore gives rise to the highest com-
plexity of combinations of k,, ks, and ko [see Eq. (2)] in
the tensorial angular functions I.

It is well known [7-10] that at incident energies within
2 eV of the ionization threshold the interaction between
the outgoing electrons leads to substantial changes in
their energies, directions, and angular momenta, but the
present analysis gives a clear indication that interactions
involving all three momenta have profound effects up to
20 eV or more above threshold.

Experiments are at present in progress in our labo-
ratory to measure differential cross sections for which
the two detected electrons have energies and also scat-
tering angles that are different from each other. Anal-
ysis of these will provide a complete set of amplitudes
Bi_1,1,, which will in turn enable a comparison to be
made for the first time with measured noncoincidence
double-differential and total cross sections.
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FIG. 1. The calculated fitting amplitudes Bi, 1,1, (Ka, kb, ko)
for the helium (e,2e) differential cross section symmetric in
energy and scattering angle. The amplitudes are grouped
into equal [o values, the associated value of I, being shown
immediately above these. The I, component can be deduced
from the condition ls + Iy = lo, lo + 2,....



